3.183 \(\int \frac {\tan ^5(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=100 \[ -\frac {2 \tanh ^{-1}\left (\frac {\sqrt {a \sec (c+d x)+a}}{\sqrt {a}}\right )}{a^{3/2} d}+\frac {2 (a \sec (c+d x)+a)^{5/2}}{5 a^4 d}-\frac {2 (a \sec (c+d x)+a)^{3/2}}{a^3 d}+\frac {2 \sqrt {a \sec (c+d x)+a}}{a^2 d} \]

[Out]

-2*arctanh((a+a*sec(d*x+c))^(1/2)/a^(1/2))/a^(3/2)/d-2*(a+a*sec(d*x+c))^(3/2)/a^3/d+2/5*(a+a*sec(d*x+c))^(5/2)
/a^4/d+2*(a+a*sec(d*x+c))^(1/2)/a^2/d

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 100, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {3880, 88, 50, 63, 207} \[ \frac {2 (a \sec (c+d x)+a)^{5/2}}{5 a^4 d}-\frac {2 (a \sec (c+d x)+a)^{3/2}}{a^3 d}+\frac {2 \sqrt {a \sec (c+d x)+a}}{a^2 d}-\frac {2 \tanh ^{-1}\left (\frac {\sqrt {a \sec (c+d x)+a}}{\sqrt {a}}\right )}{a^{3/2} d} \]

Antiderivative was successfully verified.

[In]

Int[Tan[c + d*x]^5/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

(-2*ArcTanh[Sqrt[a + a*Sec[c + d*x]]/Sqrt[a]])/(a^(3/2)*d) + (2*Sqrt[a + a*Sec[c + d*x]])/(a^2*d) - (2*(a + a*
Sec[c + d*x])^(3/2))/(a^3*d) + (2*(a + a*Sec[c + d*x])^(5/2))/(5*a^4*d)

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 88

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandI
ntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IntegersQ[m, n] &&
(IntegerQ[p] || (GtQ[m, 0] && GeQ[n, -1]))

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 3880

Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> -Dist[(d*b^(m - 1)
)^(-1), Subst[Int[((-a + b*x)^((m - 1)/2)*(a + b*x)^((m - 1)/2 + n))/x, x], x, Csc[c + d*x]], x] /; FreeQ[{a,
b, c, d, n}, x] && IntegerQ[(m - 1)/2] && EqQ[a^2 - b^2, 0] &&  !IntegerQ[n]

Rubi steps

\begin {align*} \int \frac {\tan ^5(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {(-a+a x)^2 \sqrt {a+a x}}{x} \, dx,x,\sec (c+d x)\right )}{a^4 d}\\ &=\frac {\operatorname {Subst}\left (\int \left (-3 a^2 \sqrt {a+a x}+\frac {a^2 \sqrt {a+a x}}{x}+a (a+a x)^{3/2}\right ) \, dx,x,\sec (c+d x)\right )}{a^4 d}\\ &=-\frac {2 (a+a \sec (c+d x))^{3/2}}{a^3 d}+\frac {2 (a+a \sec (c+d x))^{5/2}}{5 a^4 d}+\frac {\operatorname {Subst}\left (\int \frac {\sqrt {a+a x}}{x} \, dx,x,\sec (c+d x)\right )}{a^2 d}\\ &=\frac {2 \sqrt {a+a \sec (c+d x)}}{a^2 d}-\frac {2 (a+a \sec (c+d x))^{3/2}}{a^3 d}+\frac {2 (a+a \sec (c+d x))^{5/2}}{5 a^4 d}+\frac {\operatorname {Subst}\left (\int \frac {1}{x \sqrt {a+a x}} \, dx,x,\sec (c+d x)\right )}{a d}\\ &=\frac {2 \sqrt {a+a \sec (c+d x)}}{a^2 d}-\frac {2 (a+a \sec (c+d x))^{3/2}}{a^3 d}+\frac {2 (a+a \sec (c+d x))^{5/2}}{5 a^4 d}+\frac {2 \operatorname {Subst}\left (\int \frac {1}{-1+\frac {x^2}{a}} \, dx,x,\sqrt {a+a \sec (c+d x)}\right )}{a^2 d}\\ &=-\frac {2 \tanh ^{-1}\left (\frac {\sqrt {a+a \sec (c+d x)}}{\sqrt {a}}\right )}{a^{3/2} d}+\frac {2 \sqrt {a+a \sec (c+d x)}}{a^2 d}-\frac {2 (a+a \sec (c+d x))^{3/2}}{a^3 d}+\frac {2 (a+a \sec (c+d x))^{5/2}}{5 a^4 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.18, size = 79, normalized size = 0.79 \[ \frac {2 \left (\sec ^3(c+d x)-2 \sec ^2(c+d x)-2 \sec (c+d x)-5 \sqrt {\sec (c+d x)+1} \tanh ^{-1}\left (\sqrt {\sec (c+d x)+1}\right )+1\right )}{5 a d \sqrt {a (\sec (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Tan[c + d*x]^5/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

(2*(1 - 2*Sec[c + d*x] - 2*Sec[c + d*x]^2 + Sec[c + d*x]^3 - 5*ArcTanh[Sqrt[1 + Sec[c + d*x]]]*Sqrt[1 + Sec[c
+ d*x]]))/(5*a*d*Sqrt[a*(1 + Sec[c + d*x])])

________________________________________________________________________________________

fricas [A]  time = 0.59, size = 261, normalized size = 2.61 \[ \left [\frac {5 \, \sqrt {a} \cos \left (d x + c\right )^{2} \log \left (-8 \, a \cos \left (d x + c\right )^{2} + 4 \, {\left (2 \, \cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} - 8 \, a \cos \left (d x + c\right ) - a\right ) + 4 \, {\left (\cos \left (d x + c\right )^{2} - 3 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}}}{10 \, a^{2} d \cos \left (d x + c\right )^{2}}, \frac {5 \, \sqrt {-a} \arctan \left (\frac {2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{2 \, a \cos \left (d x + c\right ) + a}\right ) \cos \left (d x + c\right )^{2} + 2 \, {\left (\cos \left (d x + c\right )^{2} - 3 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}}}{5 \, a^{2} d \cos \left (d x + c\right )^{2}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^5/(a+a*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

[1/10*(5*sqrt(a)*cos(d*x + c)^2*log(-8*a*cos(d*x + c)^2 + 4*(2*cos(d*x + c)^2 + cos(d*x + c))*sqrt(a)*sqrt((a*
cos(d*x + c) + a)/cos(d*x + c)) - 8*a*cos(d*x + c) - a) + 4*(cos(d*x + c)^2 - 3*cos(d*x + c) + 1)*sqrt((a*cos(
d*x + c) + a)/cos(d*x + c)))/(a^2*d*cos(d*x + c)^2), 1/5*(5*sqrt(-a)*arctan(2*sqrt(-a)*sqrt((a*cos(d*x + c) +
a)/cos(d*x + c))*cos(d*x + c)/(2*a*cos(d*x + c) + a))*cos(d*x + c)^2 + 2*(cos(d*x + c)^2 - 3*cos(d*x + c) + 1)
*sqrt((a*cos(d*x + c) + a)/cos(d*x + c)))/(a^2*d*cos(d*x + c)^2)]

________________________________________________________________________________________

giac [A]  time = 4.90, size = 168, normalized size = 1.68 \[ -\frac {2 \, {\left (\frac {5 \, \arctan \left (\frac {\sqrt {2} \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}}{2 \, \sqrt {-a}}\right )}{\sqrt {-a} a \mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )} + \frac {\sqrt {2} {\left (5 \, {\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a\right )}^{2} + 10 \, {\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a\right )} a + 4 \, a^{2}\right )}}{{\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a\right )}^{2} \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} a \mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}\right )}}{5 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^5/(a+a*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

-2/5*(5*arctan(1/2*sqrt(2)*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)/sqrt(-a))/(sqrt(-a)*a*sgn(tan(1/2*d*x + 1/2*c)^
2 - 1)) + sqrt(2)*(5*(a*tan(1/2*d*x + 1/2*c)^2 - a)^2 + 10*(a*tan(1/2*d*x + 1/2*c)^2 - a)*a + 4*a^2)/((a*tan(1
/2*d*x + 1/2*c)^2 - a)^2*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)*a*sgn(tan(1/2*d*x + 1/2*c)^2 - 1)))/d

________________________________________________________________________________________

maple [B]  time = 1.13, size = 224, normalized size = 2.24 \[ \frac {\sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \left (5 \arctan \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {2}}{2}\right ) \left (-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {5}{2}} \sqrt {2}\, \left (\cos ^{2}\left (d x +c \right )\right )+10 \arctan \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {2}}{2}\right ) \left (-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {5}{2}} \sqrt {2}\, \cos \left (d x +c \right )+5 \sqrt {2}\, \arctan \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {2}}{2}\right ) \left (-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {5}{2}}+8 \left (\cos ^{2}\left (d x +c \right )\right )-24 \cos \left (d x +c \right )+8\right )}{20 d \cos \left (d x +c \right )^{2} a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)^5/(a+a*sec(d*x+c))^(3/2),x)

[Out]

1/20/d*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)*(5*arctan(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*2^(1/2))*(-2*cos
(d*x+c)/(1+cos(d*x+c)))^(5/2)*2^(1/2)*cos(d*x+c)^2+10*arctan(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*2^(1/2))
*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(5/2)*2^(1/2)*cos(d*x+c)+5*2^(1/2)*arctan(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(
1/2)*2^(1/2))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(5/2)+8*cos(d*x+c)^2-24*cos(d*x+c)+8)/cos(d*x+c)^2/a^2

________________________________________________________________________________________

maxima [A]  time = 0.55, size = 110, normalized size = 1.10 \[ \frac {\frac {5 \, \log \left (\frac {\sqrt {a + \frac {a}{\cos \left (d x + c\right )}} - \sqrt {a}}{\sqrt {a + \frac {a}{\cos \left (d x + c\right )}} + \sqrt {a}}\right )}{a^{\frac {3}{2}}} + \frac {2 \, {\left (a + \frac {a}{\cos \left (d x + c\right )}\right )}^{\frac {5}{2}}}{a^{4}} - \frac {10 \, {\left (a + \frac {a}{\cos \left (d x + c\right )}\right )}^{\frac {3}{2}}}{a^{3}} + \frac {10 \, \sqrt {a + \frac {a}{\cos \left (d x + c\right )}}}{a^{2}}}{5 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^5/(a+a*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

1/5*(5*log((sqrt(a + a/cos(d*x + c)) - sqrt(a))/(sqrt(a + a/cos(d*x + c)) + sqrt(a)))/a^(3/2) + 2*(a + a/cos(d
*x + c))^(5/2)/a^4 - 10*(a + a/cos(d*x + c))^(3/2)/a^3 + 10*sqrt(a + a/cos(d*x + c))/a^2)/d

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\mathrm {tan}\left (c+d\,x\right )}^5}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(c + d*x)^5/(a + a/cos(c + d*x))^(3/2),x)

[Out]

int(tan(c + d*x)^5/(a + a/cos(c + d*x))^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\tan ^{5}{\left (c + d x \right )}}{\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)**5/(a+a*sec(d*x+c))**(3/2),x)

[Out]

Integral(tan(c + d*x)**5/(a*(sec(c + d*x) + 1))**(3/2), x)

________________________________________________________________________________________